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Abstract—The nonlinear recovery is not promising in accuracy
and speed, which limits the practical usage of compressed sensing
(CS). This paper proposes a deep learning-based CS framework
which leverages a deep convolutional auto-encoder for image
sensing and recovery. The utilized auto-encoder architecture
consists of three components: the fully convolutional network
acts as an adaptive measurement matrix generator in the
encoder; while in the decoder, the deconvolution network and
refined reconstruction network are learned for intermediate and
final recovery, respectively. Different from most previous work
focusing on the block-wise manner to reduce implementation
cost but result in blocky artifacts, our adaptive measurement
matrix is applicable to any size of scene image and the decoder
network reconstructs the whole image efficiently without any
blocky artifacts. Moreover, dense connectivity is leveraged to
combine multi-level features and alleviate the vanishing-gradient
problem in the refined reconstruction network which boosts the
performance on image recovery. Compared to the state-of-the-art
methods, our algorithm improves more than 0.8 dB in average
PSNR.

Index Terms—Compressed sensing, Adaptive measurement
matrix, Convolutional auto-encoder, Image reconstruction

I. INTRODUCTION

Compressed sensing (CS) [1] is a well-studied research

topic in signal processing. The CS theory indicates that robust

signal recovery can be obtained from far fewer samples

than required by the Shannon-Nyquist sampling theorem. The

sparse representation of the sampled signal can be exploited

by solving the optimization problem in underdetermined linear

systems.

A variety of compressed sensing and recovery methods

have been developed for images and videos. The “single pixel

camera” [2] is one of the most impressive inventions based

on the compressed sensing, which uses only one detector to

collect the linear projection and recovers the entire image

using compressed sensing reconstruction algorithms. However

the reconstruction often takes an amount of time due to the

vectorization of high-dimensional signals. Thus, block based

CS (BCS) [3] was proposed to sense and reconstruct the scene

image in block-wise manner, where the scene image was divid-

ed into non-overlapping blocks with the same size. For refined

improvement, a multi-scale version of BCS-SPL that deploys

BCS within the domain of a wavelet transform was proposed

in [4]. For the sensing phase, random Gaussian measurement

Fig. 1. Proposed reconstruction results compared to ReconNet [5] and ground
truth. It is clearly seen that blocky artifacts could be eliminated and the
reconstruction performence is boosted using our auto-encoder network.

matrix is often used to obtain the linear measurements. To our

best knowlege, there are two mainly obvious drawbacks of

the above CS methods. One is high computational complexity

caused by non-linear optimization problem for image recovery.

The other is blocky artifacts caused by block-wise manner.

Recently, convolutional neural networks (CNNs) [6], [7]

have been leveraged to overcome the drawback of time cost

in image reconstruction from CS measurements [5], [8].

ReconNet [5] was proposed to learn the mapping from CS

measurements back to the original image by utilizing CNNs

[6], which replaces the traditional iterative reconstruction

algorithm. However, ReconNet does not involve any method

of designing measurement matrix. Although the non-iterative

reconstruction is fast, the reconstruction performance is un-

satisfactory and suffers from blocky artifacts. Later in [8],

the fully connected network was used in both sensing and

reconstruction, which successfully reconstructed high quality

image. However, since the fully connected layers fix the input

dimension, the work still maintains block-wise CS manner and

suffers from blocky artifacts.

In this paper, we propose a deep convolutional auto-encoder

for image compressed sensing and reconstruction. By re-

moving the non-linear modules such as batch normalization

[9] layers and non-linear activation layers from the encoder

network, we achieve generating the adaptive measurement

matrix by a 4-layer fully convolutional network. The adaptive

measurement matrix and the decoder network can apply to any

size of the scene image so that sensing and recovery always

perform on the whole image which avoids blocky artifacts as

shown in Fig. 1. In our refined reconstruction network, dense

connectivity is used to combine multi-level features for final

reconstruction. It alleviates the vanishing-gradient problem and
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Fig. 2. Three components of our auto-encoder. The fully convolutional network contains 4 convolutional layers to learn adaptive measurement matrix.
Symmetric with the fully convolutional network, the deconvolution network is employed for intermediate reconstruction. The refined reconstruction network
contains 13 convolutional layers with dense connectivity. The relation of num with measurement rate is defined by Equation 3. All these three components
are described in section II.

makes our architecture more effective for image recovery.

Compared to the state-of-the-art method, the performance

of proposed auto-encoder with fully convolutional network,

deconvolutional network and refined reconstruction network

(AE-FDR) improves more than 0.8dB in terms of PSNR. Even

without the refined reconstruction network, the auto-encoder

with fully convolutional network and deconvolutional network

(AE-FD) achieves generating high quality reconstruction with

faster speed and lower computational cost.

II. PROPOSED METHOD

Given vectorized image x ∈ R
N , and linear measurement

matrix Φ ∈ R
M×N (M < N), the measurements of the image

are obtained by y = Φx.

Instead of using random Gaussian matrix, this paper aims to

learn an adaptive measurement matrix Φ with a deep convolu-

tional auto-encoder. Fig. 2 depicts the proposed auto-encoder

framework for compressed sensing. Section II-A elaborates

that the encoder leverages fully convolutional networks to

adaptively generate measurements y. The decoder consists

of the deconvolution network and the refined reconstruction

network for intermediate and final reconstruction, shown in

Section II-B and II-C.

A. Adaptive measurement matrix

Different from most previous deep auto-encoders, our en-

coder network consists of a 4-layer fully convolutional net-

work, from which we extract non-linear modules for linear

sensing. According to [10] convolutional operation in deep

neural network is equivalent to multiply the vectorized input

by the weight matrix. Denote by Fk(α) the output of the kth

convolutional layer with weight matrix wk and bias vector bk.

Fk(α) = wkα+ bk (1)

where α is the vectorized input of kth layer. Thus, the output

F (x) of the 4-layer fully convolutional network without any

non-linear module is formulated by:

F (x) = w4 (w3 (w2 (w1x+ b1) + b2) + b3) + b4

= w4w3w2w1x+ w4w3w2b1 + w4w3b2 + w4b3 + b4
(2)

Equation (2) implies that the measurement matrix can be

adaptively determined by Φ = w4w3w2w1 while w4w3w2b1+
w4w3b2 + w4b3 + b4 is a constant vector after the network

convergence. Consequently, CS measurements can be obtained

from the 4-layer fully convolutional network. It is worth

mentioning that the proposed compressed sensing method can

suppress blocky artifacts, as it can avoid block-wise processing

by adapting to any size of scene image. In practice, we set

kernel size to 4× 4 and stride to 2 in each layer of the fully

convolutional network and adopt zero-padding for each side

of input by one pixel. The input downscales through each

convolutional layer with scale factor of 2×. Thus, the size

num of output feature maps of the fully convolutional network

can be determined based on the measurement rate R.

num = �256×R+ 0.5� (3)

Here, �·� stands for the rounding down operation.

B. Deconvolution Network

We design the deconvolution network symmetric to the

fully convolutional network for intermediate reconstruction.

We utilize a 4-layer deconvolution network to learn up-scaling

filters and obtain an intermediate image reconstruction x̄ from

measurements y:

x̄ = D(y) (4)



TABLE I
AVERAGE PSNR AND SSIM FOR 10 TEST IMAGES AT DIFFERENT

MEASUREMENT RATES (R = M
N

) OBTAINED BY THE PROPOSED METHOD

(AE-FD, AE-FDR), MS-BCS-SPL [4], BCS-DL [8] AND RECONNET

[5], RESPECTIVELY. THE RESULTS IS REPRESENTED AS PSNR|SSIM.

Algorithm R=0.25 R = 0.10 R = 0.04 R = 0.01

MS-BCS-SPL 31.14|0.874 27.34|0.757 24.64|0.626 23.32|0.573
BCS-DL 32.15|0.976 28.21|0.916 25.13|0.806 22.36|0.607
ReconNet 26.93|0.876 24.54|0.774 22.51|0.650 19.68|0.483

AE-FD (Ours) 32.07|0.976 28.58|0.922 26.04|0.834 23.52|0.678
AE-FDR (Ours) 32.55|0.976 28.91|0.926 26.27|0.839 23.61|0.683

where D(y) indicates the projection from y onto x̄ using the

proposed deconvolution network. It should be noted that, con-

trary to the fully convolutional network for linear sensing, the

deconvolution network is used for non-linear reconstruction

from CS measurements back to original image. Therefore,

Batch Normalization layers and ReLU layers are introduced

to accelerate deep network training and nonlinear mapping.

Given the training set of N pairs of images and measurements

(xi, yi), i = 1, · · · , N , the intermediate reconstruction is

derived from the deconvolution network by minimizing the

Mean Squared Error (MSE):

L({WF ,WD}) = 1

N

∑N

i
‖D(yi)− xi‖2 (5)

Here WF and WD are the weights for the proposed fully

convolutional network and deconvolution network.

C. Refined Reconstruction Network

The role of our refined reconstruction network is to refine

the quality of reconstruction image. The architecture is shown

in Fig. 2, which totally consists of 13 convolutional layers.

We construct refined reconstruction network by applying con-

volutional blocks and introduce dense connectivity [7]. Each

convolutional blocks comprise three convolutional layers. With

the dense connectivity, the ith layer uses the feature-maps of

all preceding layers, X0, X, · · · , Xi−1 as input:

Xi = max(0, Fi([X0, X1, · · ·Xi−1])) (6)

where [X0, X1, · · ·Xi−1] denotes the concatenation of the

feature maps of preceding layers 0, 1 · · · , i − 1. max refers

to the operation of ReLU layer. We introduce this strategy to

encourage feature reuse and boost our network performance

in reconstruction. Specifically, the intermediate reconstruction

as low-level feature is concatenated to all the convolutional

blocks and reconstruction layer by dense connectivity. Given

a training image data xi, let ϕ(xi) denotes output of our auto-

encoder and WR denotes the weights of refined reconstruction

network. We minimize the following MSE to obtain the

optimum weights of our network:

L({WF ,WD,WR}) = 1

N

∑N

i
‖ϕ(xi)− xi‖2 (7)

III. EXPERIMENT

In this section, we discuss the implementation details and

evaluate the performance of the proposed method.

TABLE II
AVERAGE RUN-TIME(IN SECONDS) FOR RECONSTRUCTING AN IMAGE OF

512× 512 PIXELS.

Algorithm R=0.25 R=0.1 R=0.04 R=0.01

MS-BCS-SPL 5.5593 12.8645 20.0781 7.2037
BCS-DL 0.1061 0.1053 0.1045 0.1002
ReconNet 0.0251 0.0254 0.0251 0.0243

AE-FD (Ours) 0.0246 0.0248 0.0227 0.0237
AE-FDR (Ours) 0.1036 0.1029 0.1031 0.0997

A. Datasets and Settings

The training dataset consists of 1,200,000 image patches

of size 64 × 64 randomly extracted from ImageNet. Similar

to most CS methods, we mainly focus on the reconstruction

performance on the luminance component. In addition, We find

that the models trained in the luminance channel can also be

used in both Cb and Cr channels. The extensive experiments

in color image are shown in supplemental files. The proposed

methods are evaluated on the test images described in [8].

Our networks are implemented using Caffe [11] and opti-

mized using Adam [12]. The training phase consists of two

stages. In the first stage, we train the model AE-FD, in

which WF and WD are initialized using the method [13]

and learned to reconstruct an intermediate reconstruction. The

initial learning rate is set to 0.0001 and step strategy is used to

update learning rate with step-size 400,000, gamma 0.1 and

the maximum number of iterations 800,000. In the second

stage, we train the model AE-FDR and update WF , WD,

WR to obtain final reconstruction. The weights are initialized

using pre-trained AE-FD to accelerate training. The initial

learning rate is set to 0.0001. Step strategy is applied with

step-size 300,000, gamma 0.1 and the maximum number of

iterations 450,000. The batch-size is set to 32 during both

training stages.

B. Comparison with the State-of-the-art Methods

The performance of our algorithms is compared with three

state-of-the-art CS algorithms: MS-BCS-SPL [4], ReconNet

[5] and BCS-DL [8]. MS-BCS-SPL is a classical CS method.

We directly use the code provided by the author and the

parameters are set to default values. ReconNet and BCS-DL

are two deep learning-based algorithms. For ReconNet, the

author trained the model with 21760 image patches of size

33×33 which are much smaller than ours. In order to eliminate

the impact from different size of training datasets, we retrain

the ReconNet with 5,000,000 image patches of size 33 × 33
randomly extracted from ImageNet. After convergence, the

performance of ReconNet improves about 2dB in PSNR . As

for BCS-DL, the models were trained with a large training set,

so we just supplemented the experiments at measurement rate

0.01 and 0.04. Table I evaluates the proposed AE-FD and AE-

FDR and the state-of-the-arts in terms of PSNR (dB) and SSIM

under measurement rate 0.25, 0.1, 0.04 and 0.01. It shows that

both AE-FD and AE-FDR obviously outperform ReconNet

and BCS-DL. Further, we show some visual experimental

results in Fig. 3. More experimental results on luminance

component are shown in supplemental files.



Fig. 3. Reconstruction results of ‘cameraman’ and ‘peppers’ at measurement rate 0.01. Compared to the state-of-the-art methods, we reconstruct more smooth
results (last two columns) at the low measurement rate.

Time complexity is evaluated on the average run-time for

reconstructing a test image of 512 × 512 pixels shown in

Table. II. For MS-BCS-SPL, An Intel(R) Core(TM) i5-4590

CPU is used to perform the implementations provided by the

authors. And we run the deep learning-based algorithms (BCS-

DL, ReconNet, AE-FD, AE-FDR) using a NVIDIA Titan XP

GPU. Compared to MS-BCS-SPL, the average speedup of

our method (AE-FD, AE-FDR) is over 400 times and 50

times, respectively. One reason of speedup is based on the

parallel computing using GPU. But the most important reason

is because our methods perform non-iterative reconstruction

process. Next, we compare our methods with state-of-the-art

deep learning-based algorithms (BCS-DL, ReconNet). It is ob-

viously concluded that our algorithm AE-FD outperforms the

state-of-the-art CS reconstruction methods in time complexity.

IV. CONCLUSIONS

In this paper, we propose a deep convolutional auto-encoder

to perform compressed sensing. By removing non-linear

modules, we achieve learning adaptive measurement matrix

using a 4-layer fully convolutional network. The adaptive

measurement matrix allows our method to avoid block-wise

processing and blocky artifacts. The model AE-FD achieves

generating high quality reconstruction with fast speed which

meet the need for real-time reconstruction. By introducing

the dense connectivity into refined reconstruction network, the

reconstruction performance of our model AE-FDR exceeds the

state-of-the-art methods by more than 0.8 dB in average PSNR.
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